Preprints and Publications



2409.13808 - Gravity as a mesoscopic system





Authors: PP, Julian Sonner and Herman Verlinde

Abstract: We employ a probabilistic mesoscopic description to draw conceptual and quantitative analogies between Brownian motion and late-time fluctuations of thermal correlation functions in generic chaotic systems respecting ETH. In this framework, thermal correlation functions of `simple' operators are described by stochastic processes, which are able to probe features of the microscopic theory only in a probabilistic sense. We apply this formalism to the case of semiclassical gravity in AdS33​, showing that wormhole contributions can be naturally identified as moments of stochastic processes. We also point out a `Matryoshka doll' recursive structure in which information is hidden in higher and higher moments, and which can be naturally justified within the stochastic framework. We then re-interpret the gravitational results from the boundary perspective, promoting the OPE data of the CFT to probability distributions. The outcome of this study shows that semiclassical gravity in AdS can be naturally interpreted as a mesoscopic description of quantum gravity, and a mesoscopic holographic duality can be framed as a moment-vs-probability-distribution duality.




2310.13047 - The Influence Functional in open holography: entanglement and Rényi entropies





Authors: PP and Julian Sonner

Abstract: Open quantum systems are defined as ordinary unitary quantum theories coupled to a set of external degrees of freedom, which are introduced to take on the rôle of an unobserved environment. Here we study examples of open quantum field theories, with the aid of the so-called Feynman- Vernon Influence Functional (IF), including field theories that arise in holographic duality. We interpret the system in the presence of an IF as an open effective field theory, able to capture the effect of the unobserved environment. Our main focus is on computing Rényi and entanglement entropies in such systems, whose description from the IF, or "open EFT", point of view we develop in this paper. The issue of computing the entanglement-Rényi entropies in open quantum systems is surprisingly rich, and we point out how different prescriptions for the IF may be appropriate depending on the application of choice. A striking application of our methods concerns the fine-grained entropy of subsystems when including gravity in the setup, for example when considering the Hawking radiation emitted by black holes. In this case we show that one prescription for the IF leads to answers consistent with unitary evolution, while the other merely reproduces standard EFT results, well known to be inconsistent with unitary global evolution. We establish these results for asymptotically AdS gravity in arbitrary dimensions, and illustrate them with explicit analytical expressions for the IF in the case of matter-coupled JT gravity in two dimensions.




2202.11718 - Sailing past the End of the World and discovering the Island





Authors: Tarek Anous, Marco Meineri, PP and Julian Sonner

Abstract: Large black holes in anti-de Sitter space have positive specific heat and do not evaporate. In order to mimic the behavior of evaporating black holes, one may couple the system to an external bath. In this paper we explore a rich family of such models, namely ones obtained by coupling two holographic CFTs along a shared interface (ICFTs). We focus on the limit where the bulk solution is characterized by a thin brane separating the two individual duals. These systems may be interpreted in a double holographic way, where one integrates out the bath and ends up with a lower-dimensional gravitational braneworld dual to the interface degrees of freedom. Our setup has the advantage that all observables can be defined and calculated by only relying on standard rules of AdS/CFT. We exploit this to establish a number of general results, relying on a detailed analysis of the geodesics in the bulk. Firstly, we prove that the entropy of Hawking radiation in the braneworld is obtained by extremizing the generalized entropy, and moreover that at late times a so-called `island saddle' gives the dominant contribution. We also derive Takayanagi's prescription for calculating entanglement entropies in BCFTs as a limit of our ICFT results.




2102.06184 - Integrable Models and Supersymmetry Breaking





Authors: PP and Augusto Sagnotti

Abstract: We elaborate on integrable dynamical systems from scalar-gravity Lagrangians that include the leading dilaton tadpole potentials of broken supersymmetry. In the static Dudas-Mourad compactifications from ten to nine dimensions, which rest on these leading potentials, the string coupling and the space-time curvature become unbounded in some regions of the internal space. On the other hand, the string coupling remains bounded in several corresponding solutions of these integrable models. One can thus identify corrected potential shapes that could grant these features generically when supersymmetry is absent or non-linearly realized. On the other hand, large scalar curvatures remain present in all our examples. However, as in other contexts, the combined effects of the higher-derivative corrections of String Theory could tame them.