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January 6th to 10th, 2025

Quantum chaos, random matrices and low-dimensional quantum gravity
Teacher: Prof. Julian Sonner

Assistant: Pietro Pelliconi

1 Lyapunov Exponent of the Logistic Map

Consider the logistic map
xn+1 = rxn(1− xn) . (1.1)

(a) Study the fixed points x∗ of the evolution. Starting from xn+1 = f(xn), these can
be found solving x∗ = f(x∗). Show that the only fixed point for r < 1 is x∗ = 0,
while for r > 1 the fixed point is x∗ = 1 − (1/r). Show that this fixed point is
stable only if r < 3. What happens then?

For r > 3.57 . . . , the system becomes chaotic. Computing its Lyapunov exponent is
generally hard, but it can be done for the special case r = 4. Under this assumption,
consider the change of variables

xn = sin2 (πyn) , (1.2)

with the constraint 0 < yn ≤ 1.

(b) What is the Logistic map in the yn coordinates? In the following we will choose
the branch

yn+1 =

{
2yn, 0 < yn ≤ 1/2

2yn − 1, 1/2 < yn ≤ 1
(1.3)

(c) As you have seen in the lecture, for any dynamical map yn+1 = f(yn) the Lyapunov
exponent can be written as

λ = lim
n→∞

1

n

n−1∑
i=0

log
∣∣f ′(yi)

∣∣ . (1.4)
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Show that for r = 4, the Lyapunov exponent of (1.3) is λ = log(2).

Let’s try to visualise this result. Write a yn ∈ R in base 2.

(d) Show that the Logistic map (1.3) acts as yn+1 = 2yn(mod 2). This means that,
in base two, it shifts the whole digit expression to the left, such that 0.abcd . . .
becomes 0.bcd . . . , with a, b, c, d, · · · ∈ {0, 1}.

(e) Can you convince yourself that this map is chaotic? Why is the Lyapunov exponent
log(2)?

(f) What are the periodic orbits (i.e. a set of points connected by the action of the
map, with a finite period) of this map? Is it an infinite set? Is it dense in (0, 1]?

2 Random Matrices and Spectral Statistics

Consider a Gaussian matrix model made of real Hermitian (i.e. symmetric) matrices of
dimension 2, so that

P (H) dH =

√
2

(2π)
3
2

e−
1
2
Tr[H2] dH , with dH =

∏
i≤j

dHij . (2.1)

(a) What is the generic form of H? What are its eigenvalues λ±?

(b) Compute the probability distribution of the difference between the eigenvalues.
To do so, find ∆λ = λ+ − λ− in terms of the generic parameters of H, and then
compute

P (ω) =

∫
dH P (H) δ(ω −∆λ) . (2.2)

(c) Compute the mean level spacing

∆ =

∫ ∞

0
dω ωP (ω) . (2.3)

Find P (s), with s = ω/∆. This distribution is normally called Wigner’s surmise
(for the GOE random matrix class).

We now want to look at the distribution of the eigenvalues, for large matrices. We
consider then N ×N hermitian matrices, distributed as

P (H)dH = e
− N

2g2
Tr[H2]

. (2.4)

2
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Here, the parameter g2 sets the energy units, while the factor of N ensures that the
large-N limit is well defined. One then defines, in analogy with statistical physics, the
partition function

Z =

∫
dHe−V (H) =

∫ N∏
i=1

dλi

N∏
k<l

|λk − λl|2 e
− N

2g2

∑
i λ

2
i . (2.5)

Let’s unpack this expression. on the RHS of the first equality, we have the integral of
the probability distribution, as we would in statistical mechanics. Then, this integral
is written in terms of the eigenvalues of the matrix H. Notice the interesting measure,
which is called Vandermonde determinant1. We can rewrite this partition function into
the form

Z =

∫ N∏
i=1

dλi e
−N2Seff (2.6)

where

Seff =
1

2Ng2

N∑
i=1

λ2
i −

2

N2

∑
i<j

log |λi − λj | . (2.7)

Notice that Seff is O(1) in the large-N limit, justifying our previous choice of (2.4).
Moreover, sending N → ∞, the partition function localises on the saddle.

(d) Show that the saddle-point equations for the potential above are

1

Ng2
λi =

2

N2

∑
j ̸=i

1

λi − λj
. (2.8)

(e) The density of eigenvalues is defined as

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi) , so that
1

N

N∑
i=1

f(λi) =

∫
dλ ρ(λ)f(λ) . (2.9)

We also define the resolvent as

ω0(p) =

∫
dλ

ρ(λ)

p− λ
. (2.10)

Show that

ρ(λ) = lim
ε→0+

− 1

2πi

(
ω0(λ+ iε)− ω0(λ− iε)

)
. (2.11)

(f) Multiply (2.8) by 1/(λi − p), and sum over the index i. Show that the resulting
equation can be written as

ω2
0(p)−

pω0(p)

g2
+

1

g2
= 0 . (2.12)

1Unfortunately we won’t have time to discuss its derivation in details, but if you are interested you can
read about it in many textbooks on Random Matrix Theory.
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Solving the quadratic equation for ω0(p), show that

ρ(λ) =
1

πg

√
1− λ2

4g2
. (2.13)

This is the famous Wigner’ semicircle law.

3 Anti-de Sitter Space

Anti-de Sitter space is the maximally symmetric solution of the Einstein equations

Rµν −
1

2
gµνR+ Λgµν = 0 , (3.1)

with negative cosmological constant (Λ < 0). They can be obtained as the equations of
motions of the Einstein-Hilbert action

S =
1

16πGN

∫
dd+1x

√
g
(
R− 2Λ

)
. (3.2)

A very nice parametrisation of Λ is

Λ = −d(d− 1)

L2
, (3.3)

and in this convention the solution of (3.1) can be embedded into a flat space of dimension
(d+ 2) with signature (−,+, . . . ,+) through the hyperboloid

−X2
0 +

d+1∑
i=1

X2
i = −L2 , (3.4)

equipped with a Minkowski metric

ds2 = −dX2
0 +

d+1∑
i=1

dX2
i (3.5)

In the following, we conveniently assume L = 1 and we will only look at the case of
AdS3.

(a) Consider

X0 =
√
1 + r2 cosh(τ) , X1 = r cos(θ) , (3.6)

X3 =
√
1 + r2 sinh(τ) , X2 = r sin(θ) . (3.7)
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Show that it is a parametrisation of the surface (3.4), and that the induced metric
is

ds2 = (1 + r2)dτ2 +
dr2

1 + r2
+ r2dθ2 . (3.8)

These are normally called global coordinates2.

(b) Consider

X0 =
1 + τ2 + y2

2y
cosh(ρ) , X1 = sinh(ρ) , (3.9)

X2 =
1− τ2 − y2

2y
cosh(ρ) , X3 =

τ

y
sinh(ρ) . (3.10)

Show that it is a parametrisation of the surface (3.4), and that the induced metric
is

ds2 = dρ2 + cosh2(ρ)

(
dτ2 + dy2

y2

)
. (3.11)

This parametrisation is also written through the coordinates

z = y sech(ρ) , x = y tanh(ρ) , (3.12)

and the associated metric is

ds2 =
dτ2 + dz2 + dx2

z2
, (3.13)

which is normally called the Poincaré patch or Poincaré slicing of AdS3.

(c) Let’s focus on the Poincaré slicing (3.13), and let’s find geodesics. We want to
minimise the lagrangian

L =

∫
ds =

∫
dλ

√
τ̇2(λ) + ż2(λ) + ẋ2(λ)

z(λ)
. (3.14)

There is a rotational symmetry in the (τ, x) plane, so that we can just look at
geodesics at fixed τ . Try to compute the Euler-Lagrange equations of motion, and
show that the geodesic the connects the points x = σ1,2 on the boundary (z = 0)
is (

x− σ1 + σ2
2

)2

+ z2 =

(
σ1 − σ2

2

)2

(3.15)

(d) The length of this geodesic is strictly speaking divergent. To regularise it, we
introduce a cutoff at z = ε. Show that the length of the regularised geodesics is

ℓ = 2 log

(
|σ1 − σ2|

ε

)
. (3.16)

2In the lecture, Julian used the parameterization ds2 = cosh2(ρ)dτ2 +dρ2 + sinh2(ρ)dθ2. The two can
be connected via r = sinh(ρ).
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(e) Suppose that σ1,2 are the locations of the insertions of two operators. We can com-
pute the correlation function between them in the geodesic approximation through

⟨O(σ1)O(σ2)⟩ ∼ e−mℓ , (3.17)

where m is the mass of the dual field in the bulk. What result do you get from
(3.17)? Is it the one you would expect from a CFT? What is the dictionary between
the mass m of the dual field and the scaling dimension ∆ of the operator O, in
this approximation?

Bonus : For later purposes, and for your own knowledge, you can also have fun showing
that

X0 =
r

r+
cosh(r+θ) , X1 =

√
r2

r2+
− 1 cos(r+τ) , (3.18)

X2 =
r

r+
sinh(r+θ) , X3 =

√
r2

r2+
− 1 sin(r+τ) , (3.19)

which gives the (non-rotating) BTZ black hole metric, namely

ds2 = (r2 − r2+)dτ
2 +

dr2

r2 − r2+
+ r2dθ2 . (3.20)

In turn, this means that the BTZ black hole is locally equivalent to AdS3. You
can read more about it in hep-th/9204099.

4 Maldacena-Maoz Wormholes

This exercise is based on hep-th/0401024 and on 2203.06511

The Maldacena-Maoz construction of two-boundary Wormholes in AdSd+1 considers
generic metrics of the form

ds2 = dρ2 + cosh2(ρ) dΣ2
d , with ρ ∈ (−∞,+∞) . (4.1)

The geometry (4.1) has a constant negative curvature if and only if dΣ2
d has a constant

negative curvature. We call two-boundary wormhole a geometry with the topology
[0, 1]× Σd. Not all metrics of the form (4.1) have this topology.

(a) Let’s focus on three-dimensional wormholes, and consider

dΣ2
2 =

dzdz̄

(Im z)2
, with Im z > 0 , (4.2)

namely Σ2 = H2, the hyperbolic upper-half plane. Do you remember that this is
just a different parametrisation of the Poincaré patch of AdS3?

6
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The idea of the construction is to use the simplicity of the hyperbolic upper-half plane to
find geometries with topology [0, 1]×Σ2. In order to do that, we quotient the upper-half
plane H2 with a group Γ, such that Σ2 = H2/Γ. We take Γ to be a discrete subgroup of
PSL(2,R), namely the group of matrices γ with det(γ) = 1. Such matrices γ act on z,
the complex coordinate of H2 as

γ =

(
a b
c d

)
, such that γz ≡ az + b

cz + d
. (4.3)

(b) A well known example is

γ =

(
q1/2 0

0 q−1/2

)
, with q ∈ R+ . (4.4)

What is H2/Γ in this case? Looking at the various parametrisation of Exercise 3,
can you see that this construction is the BTZ black hole?

The idea of the last part of this exercise is to show that it is possible to construct
wormholes such that Σ2 is a two-dimensional sphere with three conical defects. These
geometries give informations about the statistics of the OPE structure constants Cijk.
We focus on matrices with |Tr(γ)| < 2, which are called elliptic.

(c) Consider

γ1 =

(
cos(ϕ1) − sin(ϕ1)
sin(ϕ1) cos(ϕ1)

)
. (4.5)

Show that the fixed point of this map is z = i.

(d) What is H2/Γ1, with Γ1 the discrete group generated by γ1? You should find it
generates a conical defect.

(e) Consider

γ2 =

(
cos(ϕ2) e−α sin(ϕ2)

−eα sin(ϕ2) cos(ϕ2)

)
, (4.6)

with α ∈ R+. Show that the fixed point of this map is z = e−αi.

The group Γ that gives a sphere with three defects is the discrete group generated by
γ1, γ2 and γ3 = γ2γ1. These quotients are also called Schwarz triangles3.

5 Universal Asymptotics for 2D CFTs

This exercise is based on 1405.5137 and on 1208.6449

3https://en.wikipedia.org/wiki/Schwarz_triangle
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Let’s consider a two-dimensional CFT on a circle of length 2π, with Hamiltonian

H = L0 + L̄0 −
c

12
. (5.1)

The two Virasoro generators commute with each other, so that the eigenvalues of the
Hamiltonian are

∣∣h, h̄〉, thus labeled by the eigenvalues of L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 and

L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉, with energy

Eh,h̄ = h+ h̄− c

12
. (5.2)

(a) A holographic CFT has a spectral gap between the vacuum and thermal states
(black holes in AdS3). For example, there are no eigenvalues between the vacuum
and the first excited state which has h = c/24 (and similarly for h̄). Show that, in
the low temperature regime (β → ∞), the thermal partition function is

lim
β→∞

Z(β) = eβc/12 . (5.3)

(b) Any thermal observable of the system is defined through a torus of the form
S12π × S1β. Moreover, the conformal invariance of the system demands that ob-
servables should depend only on the parameter t = β/2π. However, a different
identification of the thermal and spatial circle implies invariance under the modu-
lar transformation t → 1/t. Thus, show that the minimal modular completion of
the partition function (5.3) is

Z(β) = eβc/12 + eπ
2c/3β . (5.4)

This is rather striking, as the low-energy states severely constrain the distribution
of the high energy states.

Let’s consider the high-energy spectrum, looking at the high-temperature limit β → 0
and approximating the partition function to Z(β) = eπ

2c/3β.

(c) Compute the thermal energy Eβ and thermal entropy Sβ of the system.

(d) Consider the euclidean BTZ black hole,

ds2 = (r2 − r2+) dτ
2 +

dr2

r2 − r2+
+ r2dθ2 , (5.5)

which is the geometry dual to the CFT thermal state.

– Look at the near-horizon (r = r++ε) limit, and show that the geometry does
not have a conical singularity unless τ is periodic with period β = 2π/r+.

– With this information, show that

Sβ =
cπr+
3

=
cA

6
, (5.6)

where A is the area of the BTZ black hole. Notice that this is the famous
Sβ = A/4GN Bekenstein-Hawking entropy, provided c = 3/2GN in AdS-
length units.
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(e) Taking the inverse Laplace transform of (5.4), it is possible to show that the high-
energy density of states is given by the Cardy formula

ρ(E) ∼ e2π
√

c
3
E (5.7)

Do that, or show (in a saddle-point approximation) that with the ansatz (5.7), you
get the high-temperature partition function.

We can actually do something similar to the OPE structure constants. Consider the
four point function (expanded in different channels)

⟨O(0)O(x)O(1)O(∞)⟩ =
∑
hs,h̄s

|COOOs |2xhs−2hO x̄h̄s−2h̄O

=
∑
ht,h̄t

|COOOt |2(1− x)ht−2hO(1− x̄)h̄t−2h̄O (5.8)

The contribution of the identity in the t-channel (ht = 0) has a pole at x = x̄ = 1, which
has to be reproduced by the terms of the s-channel with hs and h̄s large. In particular,
we can expand

1

(1− x)2hO
=

∞∑
n=0

(
2hO + n− 1

n

)
xn . (5.9)

Remembering also the fact that COO1 = 1, we have that the scaling of the square of the
structure constants is

|COOOs |2 ∼
(

hs − 1

hs − 2hO

)(
h̄s − 1

h̄s − 2h̄O

)
∼ h2hO−1

s

Γ(2hO)

h̄2hO−1
s

Γ(2h̄O)
, for hs, h̄s → ∞ .

(5.10)
This information is captured by the Maldacena-Maoz wormhole we studied in the pre-
vious exercise.
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