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Supersymmetry




Supersymmetry

Supersymmetry is a symmetry that exchanges bosonic and fermionic dof. We can define a
spinorial supersymmetric charge Q such that, in flat space

QB,m) — |F;m)
QE,m) — [B,m)

The algebra of supersymmetric charges is

{QaaQﬁ}:O [QOHP,U] —
[Qaa M,uu] — Z.(O-,ul/)ozBQB {QOM@B} — QO-ZBP“



Gauging supersymmetry

Supersymmetry is closely related to gravity. In any theory of qguantum gravity every symmetry
must be gauged, since It’s believed that global symmetries aren’t allowed.

If we want to gauge supersymmetry we need to take into account that the theory must be
iInvariant under local translations i.e. diffeomorphisms.

A theory in which Supersymmetry is gauged is then called Supergravity. All supergravity theories
must contain

» a spin-2 massless field €, ,
- N spin-3/2 fields (N , the Gravitini.

Example: minimal supergravity D=4 found by Ferrara, Freedman and van Nieuwenhuizen.



Recap

« Supersymmetry is a particular symmetry that connects bosonic and fermionic d.o.f.
* |n a generic theory of quantum gravity, one expects all the symmetries to be gauged.
* All theories in which supersymmetry is gauged must comprise also gravity.

« Experiments tells us that supersymmetry, if at all realized in nature, must be spontaneously
broken.

Question: Can we find a natural framework in which all these ingredients are realized?

Yes, String Theory!



String Theory




String Theory

D &

String Theory is a theory that maps a two dimensional worldsheet into a target space

1 .
Sp = / d%{naﬁaaxwﬁxu _ zwyaaa%}
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Interactions



Features

String Theory has a lot of features that makes it interesting, on top of which
 The target space must have D=10 for internal consistency,
* |In the quantized theory gravity is unavoidable, as well as a dilaton field and a two form,

{gb,gW,BW} O

« Supersymmetry appears very naturally, and it’s gauged because it’s a theory of quantum
gravity,

* |t contains extended objects (D-branes and orientifold planes) whose presence in the vacuum
spontaneously break some (or all) of the supersymmetries.

We have good control on the theory only if the string coupling and the curvature of spacetime are
small.



A Web of theories

11D SUGRA
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Breaking Supersymmetry




A way of breaking Supersymmetry

With branes and orientifolds we can break supersymmetries. However usually tachyons appear in
the spectrum.

SUSY



A way of breaking Supersymmetry

Usually, when we break all the supersymmetries with extended objects like branes and
orientifolds, we get tachyons on the spectrum, which signals instabilities.

However, there are some models which do not display tachyonic modes. One particularly
Interesting is Brane Supersymmetry Breaking, which, in its simples realization, considers only 32
D9 branes and one O9 plane.

The fact that tachyons do not appear in the spectrum means that the model should be stable, at
least perturbatively.

However, as we will see, the breaking of supersymmetry will have deep consequences for the
vacuum of the theory.

[Sugimoto, 1999; Antoniadis,
Dudas, Sagnotti, 1999]



A bigger web of theories

11D SUGRA
1A
- 0B
SO(16) x SO(16)
[Dixon, Harvey, 1986; ° Q
Alvarez-Gaume, Ginsparg,
Moore, Vafa, 1986] Y
®
Il B 0’ B [Sagnotti, 1995]
®
These theories are | U Sp(32)
all non_tachyonic! [Sugimoto, 1999; Antoniadis,

Dudas, Sagnotti, 1999]



LowEnergyEFT

The effective action is of the form

1

S = [ A0y=g | R 300,006~ V(e) + ..

From the perturbative expansion we can write the potential as

V()= cpelrt2)?

neN

In our case (in Einstein frame)

3

Vusp(32) (@) = Cle%qb T Vos(9) = crez? + ... Vsoe)xso(i6) (@) = c2 ez? + ...



Main problem

The presence of the potential shifts the vacuum from flat space to a curved spacetime.
What can we say about the new vacuum of the theory?

Simplifying assumptions:

« We do not consider fluxes of any type,

* Since flat space is not a solution of the EOM anymore, we need to consider other spacetimes
which are less symmetric,

e A common ansatz for the metric is then

ds* = ezA(r)anm“dmy + 2B 42 , 0,

o(r) -



Normalization

In the following it will be much easier to use the normalization

A g
A== 6=
B =5 V(p) = 16’;“”

With this choice of fields we have that

Vusp2) (@) ~ e + ...
VO’B(SO) ~ €2S0 —|— “ ..

10¢p

Vso@e)xso(ie) (@) ~ e + ...




Equations of motion

Under these assumptions the system is described by a scalar-gravity lagrangian, with a potential
for the dilaton field.

The equations of motion that determine the vacuum are then

A—AB+ $? =0
B+ (A—DB)p— eV (p) =0
p* = 2e*PV(p) = A’

For a generic potential these set of coupled ODEs cannot be integrated. However, to leading
perturbative order in the theories of interest it can.



Dudas & Mourad vacuum

The solutions after this truncation are

 For the USp(32) and O'B

2 2
o — Oé\/;@clr /2 68 __ e C1T /2

 For the SO(16)xS0O(16)

e¥ = ozsmhi%(\ﬁr) cosh? (v/cor) b = Bsinh_%(\@r) cosh_%s(\/@r)

This solution displays a dynamically compactified direction!



Dudas & Mourad vacuum
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Dudas & Mourad vacuum

€

Motivating question:

t Considering higher
\ genus contributions
T . . . . . . . in the potential can

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 we find a bounded
string coupling?




An Effective Field Theory approach

Beyond Tree Level




Higher orders

The main idea is then to consider also the other perturbative contributions in the potential for

the dilaton, thus
V(9) =) cnel"2)?

neN
However

 The coefficients are not known, and we don’t even know how to compute them.

* The dynamical system is in general not integrable.

Therefore we would like to understand general rules that may grant a bounded string coupling,
and then, to make the analysis simpler, we consider string-like potentials such that the dynamical

system is integrable.



Hamiltonian constraint

[PP, Sagnotti, 2021]

One can find a general rule about potentials that can grant a bounded string coupling.

1.9 9p 1
P e V(sO)—zA

This is reminiscent of the energy conservation law for one dimensional systems in classical
mechanics, where the energy is positive.

This implies that
* |[f the potential is always positive then the system always reaches strong coupling,

* |[f the potential is negative in one region then it might happen that the string coupling is
bounded above.



[Russo, 2004; Various works from
Dudas, Kitazawa, Patil, Sagnotti, 2011-14]

Climbing scalar

This bounce back can be studied precisely, with a potential of the form

V(p) = —|Vole?¥

Solving the equations of motion one finds that

* For _ < 1 the dilaton always climbs the (inverted) potential and the string coupling is thus

ﬁnitg

 Thus any negative higher genus correction in the potential points toward a boundedness of the
string coupling.

The reason is also a matter of hierarchies.



Hierarchies

Consider our usual potential

V(p) =) cne®?

nelN
If we want the potential to be defined for all possible values of the dilaton, the coefficients must
decay fast enough.

Then writing ¢, = sign(c,)e ?""¥"  we get

with ©n+1 > Yn .



Hierarchies

This means that with negative coefficients we expect the potential to be of the form

Vo, ="+ e2n-1l¢=¢n-1) _ 27n(0=0n) 4 2Vni1(0=@ni1) 4

The approximation of the climbing
- — scalar can be trusted!

Thus In general a potential that has at
least one coefficient of the expansion
negative can bound the coupling

This can be analytically tested using
iIntegrable string-like potentials.




Potentials

Vi = Cpe*?

Vo = Ce’? + D

Vs = Ce*’¥ 4 DVt )¢

V4 = C(e%gp — eQW’>

V5 = C'log(— coth(p)) + D
Ve = C'cosh(p) + D

Ve = C cosh® (%) + Dsinh® (g)

_ 90 o -
V8:Im ClOg(e +Z> —|—D

e—2Y — g

Vo = 2C arctan(e*¥) + D



Potentials

Vi = Cpe®?

2
Vo =Ce”” + D Elementary systems
Vo = Ce27% + Delrthe

V4 = C(e%gp — 62w’>

Vs = C'log(— coth(y)) + D
Ve = C cosh(p) + D

Integrable setting 5 = 0 and defining
x
A = log(xy) v = log (5)

one obtains

. Dr+Cy
V- = C cosh® (£> + D sinh® (f) o 2
] 3 o 3 . Dy+ Cx
e ¥ 44 Yy =
Vs = Im C’log( 55 ) + D 2
e — 1 22 4 12

Vo = 2C arctan(e®?) + D —2zy = Dy +C 9



Potentials

Vi = Cpe??
V2 — 06290 + D
Vo = Ce?7% + DelvTl¥

V4 = C(e%w — 62%0>

Vs = C'log(— coth(y)) + D

Ve = C cosh(p) + D

V- = C cosh® (%) + D sinh® (g)

_ —20
nglm ClOg(e T

e—2¥ —q

Vo = 2C arctan(e®?) + D

)

+ D

[Fre, Sagnotti, Sorin, 2013]

Triangular systems

Example: for V, setting B = —¢ and

1

1

A:§log(x)+v gp:§log(x)—v

one obtains

V= —C
¥ = — 2De??
0 = — De*¥ — Cx



Potentials

Vi = Cpe*?

2
Vo=Ce"™* + D Systems integrable via quadratures
Vo = Ce27% + Delrthe

V4 — C(e%gp — 62%0>

Example: for V5 setting B = — 4 and

1 & —n? 1 §—1
Vs = C'log(— coth(p)) + D A—§10g< 4 ) Sp_ilog(ﬁjLn
Ve = C cosh(y) + D
o L/ one obtains

V7 = (’ cosh (g) + D sinh (§> .. 4C .. 4C

’ e 2% +i\" " § T
Vs = Im Clog( — ) + D

e Y —1 /)

Vo = 2C arctan(e®?) + D



An example

Consider the potential




An example

Under the change of variables

. 1 1
V1-7 V1-7
the equations of motion become
A =201 — 7262\/1_72“4
Sé _ E\/l _ 726%\/1—W295
Y
212 — 932 = 2062\/1_72“2‘ — 206%\/1_7295




An example

The solution is

2

A A ' cosh(w 7’*—7“90)}17 B
cosh(yw(r — T’A))} =2

6 o [cosh(vw(r — TA))}
cosh(w(r — 7“%0))} 12

Solutions are also perturbatively stable!

1.75 A

1.50 A

1.25 -

1.00 A

0.75 -

0.90 7

0.25 1

0.00

[PP, Sagnotti, 2021]
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[PP, Sagnotti, 2021]

Positive coefficients

Question: what happens if all the coefficients are positive?

* |[f the potential is defined for all values of © then the system is guaranteed to attain values of
strong coupling, because of the Hamiltonian constraint.

« However, if the coefficients of the expansion behave at least geometrically, then the potential
stops for some ™ and the coupling is bounded above!

Then the natural question is whether one can still have a spontaneous compactification.



A second example

Consider the potential

V(p) = C'log(— coth(y)) + D

This potential does not have only positive coefficients, 3 -

but we can argue that the solution should be similar.

1+ = V(p)
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A second example

Under the change of variables

B 1 & —n 1 §—1
B=-A, A—§log< i ), gp—§log(€+n ,

the equations of motion become




[PP, Sagnotti, 2021]

A second example

The solution is

124 —
1.0 -
&o 1 ’ 1 (P ’ 1 2
A _ 2 - ~ -
et == . |1— ffexp 2|ert —a)| —2|erf s exp ¢ — |erf — ,
2\ Few [ v )] [ (f)] Pyl o)
( -2 _ _ 2\
1 — fexp! |erf ' (p—a)| — |erf™? (%) > 0.67
690: >: :2 : :2< y B:_A 0.4 -
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Concluding Remarks




Lessons for String Theory

* Non-supersymmetric string theories display a multitude of interesting phenomena.

 One of the most interesting features is a (supposedly) dynamical compactification, which goes in
the right phenomenological direction.

 Our study points toward the fact that considering higher genus contributions in the expansion
of the potential it is generally not difficult to have a perturbative string coupling for these
models, and thus solutions that can be studied precisely.

« Remaining open questions are

1. Considering also higher derivative terms in the effective action, can we have also small
curvatures?

2. Can we find other spontaneous compactifications? Do these results also apply there?



Thank you for you attention!



Spectrum of theories

USp(32) U(32) 0B SO(16) x SO(16)
Juv > €5 B, | Guv s @, By, Juv >, ¢ 5 Buv
Ag AS, Al
Az in 496 Az in 496 Ar in (128,1) + (1,128)
ph A, oy a Ar in (16, 16)




