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Universality in statistical physics

The physics of certain classes of observables of many-body systems is independent of
the microscopic details of the theory

» Critical exponents of phase transitions



Universality in statistical physics

The physics of certain classes of observables of many-body systems is independent of
the microscopic details of the theory

» Critical exponents of phase transitions

> Random Matrix Theory (RMT) universality

A gquantum chaotic system behaves as a collection of random matrices that share
the same set of discrete symmetries

» Spectrum
> Eigenvectors (ETH)

[Wigner 1956], [BGS 1984], [Altland, Zirnbauer 1997]



Universality in gravity

» No-hair theorem:

All stationary black-hole solutions of Einstein-Maxwell equations can be described by
three independent parameters (M, Q and J).

[Israel 1967-8], [Carter 1971}
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» No-hair theorem:

All stationary black-hole solutions of Einstein-Maxwell equations can be described by
three independent parameters (M, Q and J).

[Israel 1967-8], [Carter 1971}

> Gravity and RMT:

> SFF for spectral correlations SYK: [CGHPSSSST 2018], JT-gravity: [SSS 2018], 3d-gravity: [CJ 2020]

» ETH SYK: [SV 2018], JT-gravity: [Saad 2020], 3d-gravity: [BdB 2020], [CCHM 2022]



Gravity and stochastic processes

> In this presentation, a new connection with universality, which is inspired by ETH



Gravity and stochastic processes

> In this presentation, a new connection with universality, which is inspired by ETH

> Main idea:

> ‘Simple’ low energy observables, such as thermal correlation functions, behave
as a stochastic process

> Gravity computes moments of this stochastic process



Holography

> We consider gravity in (asymptotically) AdSs;
> We assume AdS/CFT [Maldacena 1997}

>  Weakly coupled Einstein gravity is dual to a large-c CFT with a spectral gap and

3L
C — 2G N [Brown, Henneaux 1986}

» Black holes are dual to thermal states in the CFT



Thermal correlation functions

» We consider the class of thermal correlation functions
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Thermal correlation functions

» We consider the class of thermal correlation functions

Ga(t1, 715 3tn, Tn) =

> We specialise to the simplest one

> Very natural set of observables

1 _
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Thermal correlation functions in the bulk

» Action

1 %
I = dz® Vh | R - dl + S.
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Thermal correlation functions in the bulk

» Action
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> Correlation functions computed with geodesic approximation
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Thermal correlation functions in the bulk

» Action

1 2
]: d . h I dl C

> Correlation functions computed with geodesic approximation

(O(x)O(y)) ~ e~ ™Uz:Y)

> The distance above is the length of the geodesics in the BTZ metric

dr?
2 _ 2 2\ 142 2 192
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Thermal correlation functions in the bulk

> Computing the geodesics in the bulk, the thermal two point function is

28 _on [ T
Gs(t) = 25 cosh (E) + ...

» Exponential decay!

[Maldacena 2001]



Thermal correlation functions in the bulk

> Computing the geodesics in the bulk, the thermal two point function is

28 _on [ T
Gs(t) = 25 cosh (E) + ...

» Exponential decay!

» Corrections are geodesics that ‘wrap’ around the black hole, full solution is

a0 () St

nez |2 Cosh(%) + 2 Cosh(‘”;”)

[Maldacena 2001]
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> This is however inconsistent with a unitary microscopic description



Missing fluctuations

> This is however inconsistent with a unitary microscopic description

> Microscopic thermal correlation function reads

B(E;+E;)

G@(t) — Ze > e_i(Ei—Ej)t {<E2|O‘E]>‘2

2,]

> Riemann-Lebesgue lemma: it cannot vanish at late times



Missing fluctuations

> This is however inconsistent with a unitary microscopic description

> Microscopic thermal correlation function reads

B(E;+E;)

Gp(t) = Y e = e BRI (EO|E;)

2,]

‘ 2

> Riemann-Lebesgue lemma: it cannot vanish at late times

> Fluctuations at late times should be of the order ¢=¢°7 [Maldacena 2001]

We propose a framework to interpret this result |
relation with [Saad 2020]



Brownian Motion



Particle suspended in a fluid

> If you want to solve the dynamics of a particle suspended in a fluid, the many-
body problem becomes quickly intractable

d2$i
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Particle suspended in a fluid

> If you want to solve the dynamics of a particle suspended in a fluid, the many-
body problem becomes quickly intractable

d2$i
- Z V(e — i) 42 —V'(x Z Viaw (zi — x5)
v i)

> You can consider an effective theory, for example

dv
dt

= —yv(t) > v(t) = vge
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> The result obtained is a good approximation of the dynamics for some time
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Missing fluctuations

> The result obtained is a good approximation of the dynamics for some time

» However, as before, it is incompatible with a microscopic interpretation, and with
basic requirements of thermodynamics

» At late times, the particle and the fluid will have the same temperature

» Maxwell-Boltzmann distribution implies

How can we take into account these fluctuations?



Brownian motion

> ldea: employ a probabilistic mesoscopic description, adding a stochastic noise

dv
dt

= —yo(t) +£(t) with S[E(DEs)] = g 6(¢ — 5)

[Einstein 1905, Langevin 1908]
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dv
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» The parameter g sets the size of the fluctuations

> We are re-summing the effect of the interaction with the fluid particles into a
deterministic plus stochastic term

[Einstein 1905, Langevin 1908]



Brownian motion

> ldea: employ a probabilistic mesoscopic description, adding a stochastic noise

dv
dt

= —yo(t) +£(t) with S[E(DEs)] = g 6(¢ — 5)

» The parameter g sets the size of the fluctuations

> We are re-summing the effect of the interaction with the fluid particles into a
deterministic plus stochastic term

> This in turn makes the velocity a stochastic process itself

[Einstein 1905, Langevin 1908]



Brownian motion

» The first moment is unaffected

d

dt

S[o(t)) = —

Su(t)]

[Langevin 1908]



Brownian motion

» The first moment is unaffected

d

= Efo(t)] = —7E[p(t) : 3[o(t)] = v e

» The second moment is affected by connected correlations of the noise

S[o(t)o(s)] = Ep(O] Efu(s)] — o= e+ 4 Lemh=

[Langevin 1908]



Brownian motion

» The first moment is unaffected

d

dt

> This implies

= E[o(t)] = —E

= Elv(t)] Elv(s)

which gives

g:

v(t)] = vge

Q”Mkugjr

(fluctuation-dissipation!)

[Langevin 1908]



Features of a mesoscopic description

Effective description Deterministic Practical, but info loss
Mesoscopic description Probabilistic Practical, and ‘less’ info loss
Microscopic description Deterministic Impossible to solve

When is a mesoscopic description effective?



Necessary conditions

» Everything we want to describe is fundamentally deterministic
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Necessary conditions

» Everything we want to describe is fundamentally deterministic

> Three necessary conditions

1. A thermodynamic limit has to be performed
2. There must be a clear scale separation between a probe and an environment

3. The dynamics has to be observed for a long amount of time, much longer
than the intrinsic fluctuations of the system



Back to holography




Gravity and moments

> Assume the result computed previously is an expectation value
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Gravity and moments

> Assume the result computed previously is an expectation value

2A

_ 1 _ 7l
C|Gs(t)] = 528 cosh ™24 (E>

> Then, the analogy with stochastic processes suggests to compute

LGp(t)Ga(s)]

> This is an observable that ‘connects’ two boundaries



Gravity and moments

> We can ask: what kind of bulk geometries shall we consider?



Gravity and moments

> We can ask: what kind of bulk geometries shall we consider?

> A possible prescription: any geometry that ‘fills’ the boundaries



Gravity and moments

> We can ask: what kind of bulk geometries shall we consider?

> A possible prescription: any geometry that ‘fills’ the boundaries




Autocorrelation function

» Gravity computation has ‘simple’ answer in terms of Liouville correlators
[Chandra, Collier, Hartman, Maloney 2022]



Autocorrelation function

» Gravity computation has ‘simple’ answer in terms of Liouville correlators

. . _ [Chandra, Collier, Hartman, Maloney 2022]
> Approximation at late times

2[Gp(t)Ga(s)] ~

[Gﬁ( )] [Gﬁ( )]

e cosh ™24 (W—t> cosh ™24 (W—S>
)64A 3 3

. j . 5w o™ (57
J

+ ...
[Maldacena, Maoz 2004]



Comparison with Brownian motion

» Let's make a precise comparison

> BM:
2[o(t)o(s)) = Elo(t) Blo(s)] = 5= e ) 4 el
> Gravity:
] ] . 24/\’“4/\ 2T A(t+s) 22/\'/(4/\ 2T At —s|
4”[G5(t)G5(8)] ~ 4”[G5(t)] t[Gﬁ(S)] | 22(6)64A6 o | 22(6)64A6



Comparison with Brownian motion

» Let's make a precise comparison

» BM:
fo(t)0(s)] = Elo() Elu(s)] — - e 1049 4 Loales
> Gravity: \
] N N QA TAB  anA(tts) Ry N VYN
LGg(t)Gp(s)| = E[Gg(t) E[Gg(s)] - 72(3) 518 ¢ F - 72 (3)51A ¢



Back to Brownian motion

» This approximate match becomes exact in the limit

21 A
A—0, 8—0 fixing v = 7;
knowing also the limit
lim cosh (—) — ¢ 717l
A—0 2\
: NP o 7'('2A qg 7'('4A
and identitying Vo = 32A 20— Z2(B) BB Late-time fluctuations of

thermal correlators in gravity
behave as Brownian motion!



A recursive structure

» The autocorrelation does not have complete microscopic information!

> When t — s is large, there is still an exponential decay, since the noise becomes
uncorrelated
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A recursive structure

» The autocorrelation does not have complete microscopic information!

> When t — s is large, there is still an exponential decay, since the noise becomes
uncorrelated

L[GH()E[GE(s)]

> In order to be consistent with unitarity, we are led to consider higher moments,
such as

LGp(t)Gp(s)Gp(p)Gp(q))

> Multi-boundary wormholes, non-Gaussian corrections! ‘) C



A summary up to this point

> A mesoscopic description of a system is an intermediate description that contains
information on the microscopic theory in a probabilistic sense

> Thermal correlation functions in semiclassical gravity in AdS are consistently
described by a mesoscopic description

> The "naive’ (trivial topology) answer is the mean of the process
> Wormbholes represent higher moments of the process

> In a suitable double scaling limit (and up to two-day wormholes), the stochastic
process Is Brownian motion



Microscopic interpretation



Eigenstate Thermalisation Hypothesis

» Developed to explain thermalisation in closed systems

» Consider ‘\IJ> — Z C; ‘Ez>

> Two problems

1. It depends on the initial state through the ¢;

2. Thermalisation process very slow ¢ ~ ¢°

Z \Ci\QOm'
i



Eigenstate Thermalisation Hypothesis

> |dea: eigenstates in the microcanonical should window already look thermal

> [Srednicki 1999]:

(Ei|O|E;) = (0)p6i5 + e ° B2 Fy (B ,w) Ry

L Random

fluctuation
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Eigenstate Thermalisation Hypothesis

> |dea: eigenstates in the microcanonical should window already look thermal

> [Srednicki 1999]:

(Ei|O|E;) = Oy + e SF/2 Fy(B,w) R;,

> It's intrinsically probabilistic

L _<Ei\O\Ej>_

= (

| |(Ei|O|E;)

N

= ¢ 2B By(E,w)



Correlation functions and ETH

» From this point of view, the correlation function becomes a stochastic process

B(E;+E;)

1 Cm_T
Gp(t) = )Ze e TR (E;|O|E;)

2,]

‘ 2




Correlation functions and ETH

» From this point of view, the correlation function becomes a stochastic process

B(E;+E;)

Gp(t) = )Ze e BB (B 0| E))

2,]

‘ 2

» This is related to a definition of stochastic processes that is independent of a SDE

X(t) = ch fn(t)

n



Moments

> At ‘early’ times

3G (1)) ~ / dw e~ Fy(Ej, w)



Moments

> At ‘early’ times

3G (1)) ~ / dw e~ Fy(Ej, w)

» To compute the autocorrelation, we need the ansatz

4 :‘013‘2 ‘Okl|2:

T 27
O]

[ouf”

+ e 25(E) (5ik5jl + 5il5jk)H4(Ea W)



Moments

> Using this ansatz, we find

| Gp(t)Gp(s)| ~

LGp(t)] E




Moments

> Using this ansatz, we find

LG (1)Gs(s)] ~ ElGa ()] ElGs(s)] + 55 212(5) / dw e ) Hy (B, w)

1
28 72(B)

/ dwe %) H,(Eg,w)

» Same structure that we found in the Brownian casel

» Next: does it make sense to apply this formalism to holographic CFTs?



Holographic CFTs

» Spectrum: gap between the vacuum and Cardy density of states

p(h, h) ~ 627T\/%(h—2—c4)—|—271'\/%(ﬁ_2_c4)
[Cardy 1986
[Hartman, Keller, Stoica 2014

> Asymptotics of structure constants

9 _
|Cpqr| ~ CO(p7Q7T) CO(p7Q7T>
[Collier, Maloney, Maxfield, Tsiares 2019]

772

307 '>

very short fluctuations!

TeC A2

> Thermodynamics:  F3 = Sy = 35 0B = (E%) 5 — Eé —




Torus correlation functions

» Correlation functions on the torus

_ _ : T O ©
Z(T, 7—_) — Ty 627T737'(L0—c/24)—27r7j7_'(L0—c/24) (.9 ’

1 - . = -
GB(Z, 2) _ Z(T 7__) Ty _627T7/7'(L0—c/24)—27m7'(L0—c/24) O(Z, Z) 0(0)_

» Holographic CFTs and ETH
LCpqr| =0 43[

Cpqr‘Q} — CO(pv q, T) CO(ﬁv q, 7:)

[Belin, de Boer 2020], [Chandra, Collier, Hartman, Maloney 2022]




Necklace and OPE channel

P1

Gg(z,i) — Z O 9,
P1,P2 e
_ 1 =
Gs(z,2) = Z(r,7) Z \Coplpg\sz(phpz\T, 2)FN(P1, D2|T, Z)

P1,P2



Necklace and OPE channel

O O
P1 41
S o o= 3
P1,P2 Do P15Po p/2
_ 1 o
Gﬁ(zvz) — 7 Z ‘Coplpz‘z"rN(pl p2|T, Z) N (D1, D2|T, Z)
(T,
pl P2
_ 1 i
G@(Z,Z) — Z(T,T') piQPE 1 , D |7‘ ?J) FQPE( DT U) —+

—/  —/

Y Coow,Cpipyp, Foru (D, Ph|T,v) Fopr(Ph, D57, 0)
p1,P5 71 -




Necklace and OPE channel

Necklace O O
P1 pll
E O O — E OPE
/ /
1,02 9
P1,P D2 PrP2 P’z

1
Necklace Gﬁ(z,i) — 7 Z ‘Coplpz‘Q"rN(pl pQ‘T Z) (pl p2|7_ Z)
(T,
pl yP2
1 :
7\ — = 5 M
OPE G@(Z,Z) — Z(T, 7__) Ep:FQPE 1 e |7‘ U) FQPE( ‘ ) -+ carl

—/  —/

Z Coopg Cp;pgp; Fore(p1, p2|T,v) ﬁOPE(p17p2‘7_-a v)
p1,Pa7#1 -




Autocorrelation function in CFTs

> We can also compute the autocorrelation function

4:[G5(Z7 Z)Gﬁ (wv

w)| ~

UGp(2,2)

UG (w,w)




Autocorrelation function in CFTs

> We can also compute the autocorrelation function

0| Gg(2,2)Ga(w,w)] =~

j Matches the gravity computation!

[Chandra, Collier, Hartman, Maloney 2022]



Moment vs probability distribution

> From the framework outlined, we can think of semiclassical holography as a
mesoscopic duality

AdS CFT
Probability
Moments ) ” distribution

SIX ()X (s)...] X (t) = ch (1)

n




Moment vs probability distribution

> From the framework outlined, we can think of semiclassical holography as a
mesoscopic duality

AdS CFT
Probability
Moments ) ” distribution

(X ()X (s)...] X(t) =) cnfol(t)

n

» In this sense, gravity is quite unique! It's the only theory naturally defined in
terms of moments, rather than specitying a probability distribution.



Kosambi—Karhunen—Loeve Theorem

>~ Theorem (KKL): for any stochastic process X (t), it exists a basis of functions f, (¢)
such that the coefficients ¢,, of the expansion

X(t) =) cnfult)

n

[Karhunen 1947], [Loeve 1948]

are uncorrelated random variables



Kosambi—Karhunen—Loeve Theorem

>~ Theorem (KKL): for any stochastic process X (t), it exists a basis of functions f, (¢)
such that the coefficients ¢,, of the expansion

X(t) =) cnfult)

n

[Karhunen 1947], [Loeve 1948]

are uncorrelated random variables

> Our analysis suggests that, for stochastic processes connected to semiclassical
gravity, the KKL basis is the set of conformal blocks



A note on ensemble average

> In our framework, an ensemble average is not strictly needed

o~ BH/2 O(t) e PH/Z (9(0)-




A note on ensemble average

> In our framework, an ensemble average is not strictly needed

Gs(t) = Tr :e_ﬁﬂ/z O(t) e BH/2 O(O):

Gg(t) = (E|lePHZO(t) e PH/2 O(0)|E)

> This is very natural from the point of view of stochastic processes and Brownian
motion!



Summary

> A mesoscopic description of a system is an intermediate description that contains
information on the microscopic theory in a probabilistic sense

> Thermal correlation functions in semiclassical gravity in AdS are consistently
described by a mesoscopic description

> This phenomenon seems to be a generic features of quantum chaotic systems,
relying in particular on ETH

» For holographic CFTs, the KKL expansion is given by conformal blocks



Interesting directions



A stochastic bulk theory?

> Can we find a bulk theory that naturally takes into account also wormhole
contributions?

» Random tensor models

Z = / D[Lg, Lo] D[C] e~V (Fo:Lo,C)

[Belin, de Boer, Jafferis, Nayak, Sonner 2023
[Jafferis, Rozenberg, Wong 2024

> Such a theory needs to give a ‘gravitational’ meaning to

Ga(t) = + |~ |

» Perhaps a path-integral formulation of the stochastic process?




Bootstrapping quantum gravity from quantum chaos?

» Is it possible to give a quantitative estimate of the amount of information is
contained in the whole series of moments?

> Two competing answers:

» Seems we are probing finer and finer quantities

» Low energy theory still described by a handful of parameters
> We can try to infer properties of the probability distribution

> Hamburger Moment Problem: necessary and sufficient conditions for a series of
moments to be described by a positive-definite measure Lin 2020]

> |Is the probability distribution unique?






